Сопряженные линии. Сопряжение двух прямых. Рассмотрим сопряжение двух непараллельных прямых


Здесь может быть рассмотрено два случая: внешнее сопряжение (рисунок 37, а ) и внутреннее (рисунок 37, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Рисунок 37 - Сопряжение окружности и прямой линии второй дугой

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рисунок 38). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.

Рисунок 38 – Построение овала

Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.



Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рисунок 39, а ). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рисунок 39,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Рисунок 39 – Построение эллипса

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рисунок 40, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рисунок 40, б). Стороны угла, образованного этими прямыми, делят на равные части и нумеруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Рисунок 40 – Построение параболы

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (риссунок 40, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Циклоидой называют кривую линию, представляющую собой траекторию точки А при перекатывании окружности (рисунок 41). Для построения циклоиды от исходного положения точки А откладывают отрезок АА], отмечают промежуточное положение точки А. Так, в пересечении прямой, проходящей через точку 1, с окружностью, описанной из центра О 1 , получают первую точку циклоиды. Соединяя плавной прямой построенные точки, получают циклоиду.

Рисунок 41 – Построение циклоиды

Синусоидой называют плоскую кривую, изображающую изменение синуса в зависимости от изменения его угла. Для построения синусоиды (рисунок 42) нужно разделить окружность на равные части и на такое же количество равных частей разделить отрезок прямой АВ = 2лR. Из одноименных точек деления провести взаимно перпендикулярные линии, в пересечении которых получают точки, принадлежащие синусоиде.

Рисунок 42 – Построение синусоиды

Эвольвентой называют плоскую кривую, являющуюся траекторией любой точки прямой линии, перекатываемой по окружности без скольжения. Построение эвольвенты выполняют в следующем порядке (рисунок 43): окружность делят на равные части; проводят касательные к окружности, направленные в одну сторону и проходящие через каждую точку деления; на касательной, проведенной через последнюю точку деления окружности, откладывают отрезок, равный длине окружности 2 лR, который делят на столько же равных частей. На первой касательной откладывают одно деление 2 лR/n , на второй - два и т. д.

Полученные точки соединяют плавной кривой и получают эвольвенту окружности.

Рисунок 43 – Построение эвольвенты

Вопросы для самопроверки

1 Как разделить отрезок на любое равное число частей?

2 Как поделить угол пополам?

3 Как разделить окружность на пять равных частей?

4 Как построить касательную из заданной точки к данной окружности?

5 Что называется сопряжением?

6 Как сопрячь две окружности дугой заданного радиуса с внешней стороны?

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

ТЕМА: СОПРЯЖЕНИЕ ПРЯМЫХ И ОКРУЖНОСТЕЙ

СОПРЯЖЕНИЯ, ПРИМЕНЯЕМЫЕ В КОНТУРАХ ТЕХНИЧЕСКИХ ДЕТАЛЕЙ

Сопряжением называется плавный переход одной линии в другую.

Точка, в которой одна линия переходит в другую, называется точкой сопряжения.

Дуги, при помощи которых осуществляется плавный переход одной линии в другую, называются дугами сопряжений.

Касательной называется прямая, имеющая с замкнутой кривой только одну общую точку. Это предельное положение секущей, точки пересечения которой с кривой, стремясь друг к другу, сливаются в одну точку - точку касания.

Построение сопряжений основано на свойствах касательных к кривым и сводится к определению положения центра сопрягающей дуги и точек сопряжения (касания), т.е. точек, в которых заданные линии переходят в сопрягающую дугу

СОПРЯЖЕНИЕ УГЛОВ (СОПРЯЖЕНИЕ ПЕРЕСЕКАЮЩИХСЯ ПРЯМЫХ)

Сопряжение прямого угла

(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Сопряжение острого угла

(Сопряжение пересекающихся прямых под острым углом).

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение острого угла. Для построения сопряжения острого угла раствором циркуля, равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a и b. Сопряжение острого угла построено.



Сопряжение тупого угла

(Сопряжение пересекающихся прямых под тупым углом)

Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рисунок 36, а); когда она создает внутреннее касание (рисунок 36, б); когда сочетаются внутреннее и внешнее касания (рисунок 36, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

Рисунок 36 – Сопряжение окружностей дугой заданного радиуса

Сопряжение окружности и прямой линии дугой заданного радиуса

Здесь может быть рассмотрено два случая: внешнее сопряжение (рисунок 37, а ) и внутреннее (рисунок 37, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Рисунок 37 - Сопряжение окружности и прямой линии второй дугой

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рисунок 38). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.



Рисунок 38 – Построение овала

Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рисунок 39, а ). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рисунок 39,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.



Рисунок 39 – Построение эллипса

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рисунок 40, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рисунок 40, б). Стороны угла, образованного этими прямыми, делят на равные части и нумеруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Рисунок 40 – Построение параболы

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (риссунок 40, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Циклоидой называют кривую линию, представляющую собой траекторию точки А при перекатывании окружности (рисунок 41). Для построения циклоиды от исходного положения точки А откладывают отрезок АА], отмечают промежуточное положение точки А. Так, в пересечении прямой, проходящей через точку 1, с окружностью, описанной из центра О 1 , получают первую точку циклоиды. Соединяя плавной прямой построенные точки, получают циклоиду.

Рисунок 41 – Построение циклоиды

Синусоидой называют плоскую кривую, изображающую изменение синуса в зависимости от изменения его угла. Для построения синусоиды (рисунок 42) нужно разделить окружность на равные части и на такое же количество равных частей разделить отрезок прямой АВ = 2лR. Из одноименных точек деления провести взаимно перпендикулярные линии, в пересечении которых получают точки, принадлежащие синусоиде.

Рисунок 42 – Построение синусоиды

Эвольвентой называют плоскую кривую, являющуюся траекторией любой точки прямой линии, перекатываемой по окружности без скольжения. Построение эвольвенты выполняют в следующем порядке (рисунок 43): окружность делят на равные части; проводят касательные к окружности, направленные в одну сторону и проходящие через каждую точку деления; на касательной, проведенной через последнюю точку деления окружности, откладывают отрезок, равный длине окружности 2 лR, который делят на столько же равных частей. На первой касательной откладывают одно деление 2 лR/n , на второй - два и т. д.

Полученные точки соединяют плавной кривой и получают эвольвенту окружности.

Рисунок 43 – Построение эвольвенты

Вопросы для самопроверки

1 Как разделить отрезок на любое равное число частей?

2 Как поделить угол пополам?

3 Как разделить окружность на пять равных частей?

4 Как построить касательную из заданной точки к данной окружности?

5 Что называется сопряжением?

6 Как сопрячь две окружности дугой заданного радиуса с внешней стороны?

7 Что называется овалом?

8 Как строится эллипс?

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей (дуг) O 1 (радиус R 1) и O 2 (радиус R 2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг (рис.5). Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R 1 и R+R 2 , построенных из центров окружностей O 1 (R 1) и O 2 (R 2) соответственно. Затем центры окружностей O 1 и O 2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O 1 и O 2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Рисунок 5. Внешнее сопряжение дуг окружностей

Внутреннее сопряжение дуг окружностей

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O 1 , радиуса R 1 , и O 2 , радиус R 2 , располагаются внутри сопрягающей их дуги заданного радиуса R. На рис.6 приведён пример построения внутреннего сопряжения окружностей (дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R 1 и R-R 2 проведённых из центров окружностей O 1 и O 2 соответственно. После чего соединяем центры окружностей O 1 и O 2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O 1 и O 2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Рисунок 6. Внутреннее сопряжение дуг окружностей

Рисунок 7.Смешанное сопряжение дуг окружностей

Смешанное сопряжение дуг окружностей

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O 1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O 2) – внутри её. На рис.7 приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+ R 1 , из центра окружности радиуса R 1 точки O 1 , и R-R 2 , из центра окружности радиуса R 2 точки O 2 . После чего соединяем центр сопряжения точку O с центрами окружностей O 1 и O 2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.

Построение кулачка

Построение очертания кулачка в каждом варианте следует начинать с нанесения осей координат Ох и Оу . Затем строят лекальные кривые по их заданным параметрам и выделяют участки, входящие в очертание кулачка. После этого можно вычертить плавные переходы между лекальными кривыми. При этом следует учесть, что во всех вариантах через точку D проходит касательная к эллипсу.

Обозначение Rx показывает, что величина радиуса определяется построением. На чертеже вместо Rx надо проставить соответствующее число со знаком «*».

Лекальной называют кривую, которую нельзя построить с помощью циркуля. Ее строят по точкам с помощью специального инструмента, называемого лекалом. К лекальным кривым относятся эллипс, парабола, гипербола, спираль Архимеда и др.

Среди закономерных кривых наибольший интерес для инженерной графики представляют кривые второго порядка: эллипс, парабола и гипербола, с помощью которых образуются поверхности, ограничивающие технические детали.

Эллипс - кривая второго порядка. Одним из способов построения эллипса является способ построения эллипса по двум осям рис.8. При построении проводим окружности радиусами r и R из одного центра О и произвольную секущую ОА. Из точек пересечения 1 и 2 проводим прямые, параллельные осям эллипса. На их пересечении отмечаем точку М эллипса. Остальные точки строим аналогично.

Параболой называется плоская кривая, каждая точка которой расположена на одинаковом расстоянии от заданной прямой, носящей название директрисы, и точки называемой фокусом параболы, расположенных в той же плоскости.

На рисунке 9 приведен один из способов построения параболы. Даны вершина параболы О, одна из точек параболы А и направление оси – ОС. На отрезке ОС и СА строят прямоугольник, стороны этого прямоугольника в задании – А1 и В1, делят на произвольное одинаковое число равных частей и нумеруют точки деления 1, 2, 3, 4… 10. Вершину О соединяют с точками деления на А1, а из точек деления отрезка В1 проводят прямые параллельные оси ОС. Пересечение прямых, проходящих через точки с одинаковыми номерами, определяют ряд точек параболы.

Синусоидой называют плоскую кривую, изображающую изменение синуса в зависимости от изменения его угла. Для построения синусоиды (рис. 10) нужно разделить окружность на равные части и на такое же количество равных частей разделить отрезок прямой АВ = 2лR . Из одноименных точек деления провести взаимно перпендикулярные линии, в пересечении которых получают точки, принадлежащие синусоиде.

Рисунок 10. Построение синусоиды

Эвольвентой называют плоскую кривую, являющуюся траекторией любой точки прямой линии, перекатываемой по окружности без скольжения. Построение эвольвенты выполняют в следующем порядке (рис.11): окружность делят на равные части; проводят касательные к окружности, направленные в одну сторону и проходящие через каждую точку деления; на касательной, проведенной через последнюю точку деления окружности, откладывают отрезок, равный длине окружности 2 лR , который делят на столько же равных частей. На первой касательной откладывают одно деление 2 лR/n , на второй – два и т.д.

Спираль Архимеда – плоская кривая, которую описывает точка, движущаяся равномерно-поступательно от центра О по равномерно вращающемуся радиусу (рис.12).

Для построения спирали Архимеда задается шаг спирали – а, и центр О. Из центра О описывают окружность радиусом Р = а (0-8). Делят окружность на несколько равных частей, например, на восемь (точки 1, 2, …, 8). На столько же частей делят отрезок О8. Из центра О радиусами О1, О2, и т.д. проводят дуги окружностей, точки пересечения которых с соответствующими радиусами-векторами принадлежат спирали (I, II, …,YIII)

Таблица 2

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

y 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

S 1

a 1

b 1

y 1

R 1

R 2

R 3

Кулачок

№ варианта

R 1

R 2

R 3

d 1

y 1

Кулачок

№ варианта

R 1

R 2

R 3

a 1

b 1

Кулачок

№ варианта

R 1

R 2

R 3

a 1

b 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

y 1

Кулачок

№ варианта

R 1

R 2

R 3

d 1

Кулачок

№ варианта

S 1

a 1

b 1

y 1

R 1

R 2

R 3

Кулачок

№ варианта

R 1

R 2

R 3

d 1

y 1

Кулачок

№ варианта

R 1

R 2

R 3

a 1

b 1

Кулачок

№ варианта

R 1

R 2

R 3

a 1

b 1

Часто при изображении на чертеже контура детали приходится выполнять плавный переход одной линии в другую (плавный переход между прямыми линиями или окружностями) для выполнения конструктивных и технологических требований. Плавный переход одной линии в другую называют сопряжением.

Для построения сопряжений необходимо определить:

  • центры сопряжений (центры, из которых проводят дуги);
  • точки касания/точки сопряжения (точки, в которых одна линия переходит в другую);
  • радиус сопряжения (если он нс задан).

Рассмотрим основные типы сопряжений.

Сопряжение (касание) прямой и окружности

Построение прямой, касательной к окружности. При построении сопряжения прямой и окружности используется известный признак касания этих линий: прямая, касательная к окружности, составляет прямой угол с радиусом, проведенным в точку касания (рис. 1.12).

Рис. 1.12.

К - точка касания

Для проведения касательной к окружности через точку Л, лежащую вне окружности, необходимо:

  • 1) соединить заданную точку А (рис. 1.13) с центром окружности О;
  • 2) отрезок ОА разделить пополам (ОС = СА, см. рис. 1.7) и провести вспомогательную окружность радиусом СО (или СА);

Рис. 1.13.

3) точку /С, (или К.» поскольку задача имеет два решения) соединить с точкой А.

Линия АК^ (или АК.,) является касательной к заданной окружности. Точки K i и К 2 - точки касания.

Следует отметить, что рис. 1.13 иллюстрирует также один из способов точного графического построения двух перпендикулярных прямых (касательной и радиуса).

Построение прямой, касательной к двум окружностям. Обращаем внимание читателя на то, что задачу построения прямой, касательной к двум окружностям, можно рассматривать как обобщенный случай предыдущей задачи (построение касательной из точки к окружности). Сходство этих задач прослеживается из рис. 1.13 и 1.14.

Внешнее касание двух окружностей. При внешнем касании (см. рис. 1.14) обе окружности лежат но одну сторону от прямой.

На рис. 1.14 изображены малая окружность радиусом R с центром в точке А и большая окружность радиусом R { с центром в точ-


Рис. 1.14. Построение внешней касательной к двум окружностям ке О. Чтобы построить внешнюю касательную к этим окружностям, необходимо выполнить следующие действия:

  • 1) через центр О большей окружности провести вспомогательную окружность радиусом (/?, - R);
  • 2) построить касательные к вспомогательной окружности из точки А (центр малой окружности). Точки К { и К., - точки касания прямых и окружности (заметим, что задача имеет два решения);
  • 3) точки К { и К 2 соединить с центром О и продолжить эти линии до пересечения с окружностью радиусом R v Точки пересечения К л и /С, являются точками касания (сопряжения);
  • 4) через точку А провести радиусы, параллельные линиям ()К Л и ОК г Точки пересечения этих радиусов с малой окружностью - точки К- и К л являются точками касания (сопряжения);
  • 5) соединив точки К л и /С (; , а также К л и К 5 , получить искомые касательные.

Внутреннее касание двух окружностей (окружности лежат по разные стороны от прямой, рис. 1.15) выполняется по аналогии с внешнем касанием, с той лишь разницей, что через центр О большей окружности проводится вспомогательная окружность радиусом /?, + R. Па рис. 1.15 изображено два возможных решения задачи.


Рис. 1.1

Сопряжение пересекающихся прямых дугой окружности заданным радиусом. Построение (рис. 1.16) сводится к построению окружности радиусом R, касающейся одновременно обеих заданных линий.

Для нахождения центра этой окружности проводим две вспомогательные прямые, параллельные заданным, на расстоянии R от каждой из них. Точка пересечения этих прямых является центром О дуги сопряжения. Перпендикуляры, опущенные из центра О на заданные прямые, определяют точки сопряжения (касания) /С, и К 2 .


Рис. 1.16.


Рис. 1.17. Построение сопряжения окружности и прямой дугой заданным радиусом R:

а - внутреннее касание; б - внешнее касание

Сопряжение окружности и прямой дугой заданным радиусом.

Примеры построения сопряжений окружности и прямой дугой заданным радиусом R приведены на рис. 1.17.







2024 © expanserust.ru.